Consistent Order Estimation and Minimal Penalties
نویسندگان
چکیده
منابع مشابه
Multi-task Regression using Minimal Penalties Multi-task Regression using Minimal Penalties
In this paper we study the kernel multiple ridge regression framework, which we refer to as multi-task regression, using penalization techniques. The theoretical analysis of this problem shows that the key element appearing for an optimal calibration is the covariance matrix of the noise between the different tasks. We present a new algorithm to estimate this covariance matrix, based on the con...
متن کاملMinimal penalties for Gaussian model selection
This paper is mainly devoted to a precise analysis of what kind of penalties should be used in order to perform model selection via the minimization of a penalized least-squares type criterion within some general Gaussian framework including the classical ones. As compared to our previous paper on this topic (Birgé and Massart in J. Eur. Math. Soc. 3, 203–268 (2001)), more elaborate forms of th...
متن کاملMulti-task regression using minimal penalties
In this paper we study the kernel multiple ridge regression framework, which we refer to as multi-task regression, using penalization techniques. The theoretical analysis of this problem shows that the key element appearing for an optimal calibration is the covariance matrix of the noise between the different tasks. We present a new algorithm to estimate this covariance matrix, based on the con...
متن کاملOn the minimal penalty for Markov order estimation
We show that large-scale typicality of Markov sample paths implies that the likelihood ratio statistic satisfies a law of iterated logarithm uniformly to the same scale. As a consequence, the penalized likelihood Markov order estimator is strongly consistent for penalties growing as slowly as log log n when an upper bound is imposed on the order which may grow as rapidly as log n. Our method of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2013
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2012.2221122